MARK SCHEME for the October/November 2010 question paper

for the guidance of teachers

9702 PHYSICS

9702/43 Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

	Page 2		Mark Scheme: Teachers' version		Paper	
<u> </u>			Section A	9702	43]
1	(a) (i)	rate swe	of change of angle / angular displacement pt out by radius		M1 A1	[2]
	(ii)	ω×	$T = 2\pi$		B1	[1]
	(b) cer eith r ³ GM T ²	htripet her n × $4\pi^2$ // $4\pi^2$ i = cr^3	al force is provided by the gravitational force $mr(2\pi/T)^2 = GMm/r^2$ or $mr\omega^2 = GMm/r^2$ $= GM \times T^2$ s a constant (c)		B1 M1 A1 A0	[4]
	(c) (i)	eithe T =	er $T^2 = (45/1.08)^3 \times 0.615^2$ or $T^2 = 0.30 \times 45^3$ 165 years		C1 A1	[2]
	(ii)	spee	ed = $(2\pi \times 1.08 \times 10^8) / (0.615 \times 365 \times 24 \times 3600)$ = 35 km s ⁻¹		C1 A1	[2]
2	(a) ato vol tim no ato (<i>an</i>	oms / r ume c e of c forces oms / r ay four	molecules / particles behave as elastic (identical) sphe of atoms / molecules negligible compared to volume of ollision negligible to time between collisions s of attraction or repulsion between atoms / molecules molecules / particles are in (continuous) random motion r, 1 each)	res containing vessel n	(1) (1) (1) (1) (1) B4	[4]
	(b) pV $\frac{1}{3}N$ n = -E	$\vec{x} = \frac{1}{3}N$ $Nm < c^{2}$ $NM < c^{2}$ N/N_{A} $\vec{x}_{K} > = \frac{1}{2}$	$Im < c^2 > and pV = nRT or pV = NkT$ $F > = nRT or = NkT and = \frac{1}{2}m < c^2 > C^2or k = R/N_A\frac{3}{2} \times R/N_A \times T$		B1 B1 B1 A0	[3]
	(c) (i)	reac so fu	tion represents <i>either</i> build-up of nucleus from light <i>or</i> build-up of heavy nucleus fro usion reaction	nuclei m nuclei	M1 A1	[2]
	(ii)	prote 1.2 × <i>T</i> = \$ (<i>use</i>	on and deuterium nucleus will have equal kinetic energy × 10 ¹⁴ = $\frac{3}{2}$ × 8.31 / (6.02 × 10 ²³) × T 5.8 × 10 ⁸ K • of E = 2.4 × 10 ¹⁴ giving 1.16 × 10 ⁹ K scores 1 mark)	gies	B1 C1 A1	[3]
	(iii)	eithe or	er inter-molecular / atomic / nuclear forces exist proton and deuterium nucleus are positively charge	ed / repel	B1	[1]

	Page 3			Mark Scheme: Teachers' version	Syllabus	Paper	,
				GCE A LEVEL – October/November 2010 9702		43	
3	(a)	(i)	8.0 0	cm		A1	[1]
		(ii)	2πf f = 3	= 220 5 (condone unit)		C1 A1	[2]
	(iii)	line	drawn mid-way between AB and CD (allow ±2 r	mm)	B1	[1]
	(iv)	v = .	ωa 220 × 4 0		C1	
			= 8	880 cm s ⁻¹		A1	[2]
	(b)	(i)	1. 2.	line drawn 3 cm above AB (allow ±2 mm) arrow pointing upwards		B1 B1	[1] [1]
		(ii)	1. 2.	line drawn 3 cm above AB (allow ±2 mm) arrow pointing downwards		B1 B1	[1] [1]
	(iii)	v = = (inco	$\omega \sqrt{a^2 - x^2}$ 220 × $\sqrt{4.0^2 - 2.0^2}$ 760 cm s ⁻¹ prrect value for x, 0/2 marks)		C1 A1	[2]
4	(a)	(i)	work from	c done moving unit positive charge i infinity <u>to the point</u>		M1 A1	[2]
		(ii)	char	ge / potential (difference) (ratio must be clear)		B1	[1]
	(b)	(i)	capa	acitance = $(2.7 \times 10^{6}) / (150 \times 10^{3})$		C1	
			(<i>allo</i> capa	w any appropriate values) acitance = 1.8×10^{-11} (allow 1.8 ±0.05)		A1	[2]
	(ii)		eithe	er energy = $\frac{1}{2}CV^2$ or energy = $\frac{1}{2}QV$ and Q = CV	6 · · 150 · · 10 ³	C1	
			ener	$gy = \frac{1}{2} \times 1.8 \times 10^{-10} \times (150 \times 10^{-1})^{-10} \text{ or } \frac{1}{2} \times 2.7 \times 10^{-10}$ $= 0.20 \text{ J}$	* 150 * 10	A1	[2]
	(c)	either since energy $\propto V^2$, capacitor has $(\frac{1}{2})^2$ of its energy left or full formula treatment energy lost = 0.15 J		C1 A1	[2]		

	Page 4		age 4 Mark Scheme: Teachers' version		Paper	
5	(a)	magnetio	GCE A LEVEL - October/November 2010 = flux = BA = 89 × 10 ³ × 5.0 × 10 ² × 2.4 × 10 ² = 1.07 × 10 ⁴ Wb	9702	C1 A1	[2]
	(b)	(i) e.m. (for e.m.	f. = $\Delta \phi / \Delta t$ $\Delta \phi$ = 1.07 × 10 ⁴ Wb), Δt = 2.4 × 10 ² / 1.8 = 1.33 × f. = (1.07 × 10 ⁴) / (1.33 × 10 ²)	10 ² s	C1 C1	
			= 8.0 × 10 [°] V		A1	[3]
		(ii) curre	ent = 8.0 × 10 ³ / 0.12 ≈ 70 mA		M1 A0	[1]
	(c)	force on = 89×10 $\approx 3 \times 10$ suitable	wire = BIL) $^{3} \times 70 \times 10^{3} \times 5.0 \times 10^{2}$ 4 (N) comment e.g. this force is too / very small (to be felt)		C1 M1 A1	[3]
6	(a)	power / ł so indep	heating depends on I^2 endent of current direction		M1 A1	[2]
	(b)	either $I_0 = \sqrt{2} \times 2 \times 10^{-1}$ maximur ratio = 0.	maximum power = $I_0^2 R$ or average power = $I_{RMS}^2 R$ I_{RMS} n power = 2 × average power 5		M1 M1 A1	[3]
7	(a)	force due Eq = Bqu v = E/B	e to <i>E</i> -field is <u>equal and opposite</u> to force due to <i>B</i> -field	I	B1 B1 B1	[3]
	(b)	either or or so no de	charge and mass are not involved in the equation in (a $F_{\rm E}$ and $F_{\rm B}$ are both doubled <i>E</i> , <i>B</i> and <i>v</i> do not change viation	a)	M1 A1	[2]
8	(a)	minimum of electro	frequency for electron to be emitted (from surface) magnetic radiation / light / photons		M1 A1	[2]
	(b)	E = hc / . either th	λ or $E = hf$ and $c = f\lambda$ reshold wavelength = $(6.63 \times 10^{-34} \times 3.0 \times 10^8) / (5.8 \times 10^{-34})$ = 340 nm	× 10 ¹⁹)	C1	
		or ener or thre or 450 appropria so no eff	gy of 340 nm photon = 4.4×10^{-19} J shold frequency = 8.7×10^{14} Hz nm $\rightarrow 6.7 \times 10^{14}$ Hz ate comment comparing wavelengths / energies / frequence ect on photo-electric current	uencies	A1 B1 B1	[4]

Page 5		5	Mark Scheme: Teachers' version	Syllabus	Paper	•	
				GCE A LEVEL – October/November 2010	9702	43	
				Section B			
9	(a)	(i)	edg	es can be (clearly) distinguished		B1	[1]
		(ii)	e.g. (<i>an</i> y furth	size of X-ray source / anode / target / aperture scattering of X-ray beam pixel size y two, 1 each) ner detail e.g. use of lead grid		B2 B1	[3]
	(b)	X-r CT rep CT	ay im scan eateo scan	hage involves a <u>single</u> exposure n: exposure of a <u>slice</u> from many different angles d for different slices n involves a (much) <u>greater exposure</u>		B1 M1 A1 B1	[4]
10	(a)	e.g	. infin zero infin infin infin	nite input impedance / resistance o output impedance / resistance nite gain nite bandwidth nite slew rate			
		(an	ny thre	ee, 1 each)		B3	[3]
	(b)	(i)	with outp with (<i>allo</i>	a switch open, V is less (positive) than V^+ but is positive a switch closed, V is more (positive) than V^+ so output by similar scheme if V more positive than V ⁺ treated f	is negative first)	M1 A1 A1	[3]
		(ii)	1. 2.	diodes connected correctly between output and earth green identified correctly (<i>do not allow this mark if not argued in (i)</i>)		M1 A1	[2]
11	(a)	(i)	Ι/.	$I_0 = \exp(-1.5 \times 2.9) \\= 0.013$		C1 A1	[2]
		(ii)	Ι/.	$I_0 = \exp(-4.6 \times 0.95) \\= 0.013$		A1	[1]
	(b)	atte atte cor	enuat enuat htrast	ion (coefficients) in muscle and in fat are similar ion (coefficients) in bone and muscle / fat are different depends on difference in attenuation		B1 B1 B1	[3]

	Page 6		5	Mark Scheme: Teachers' version	Syllabus	Paper	,
				GCE A LEVEL – October/November 2010	9702	43	
12	(a)	(i)	1. 2.	signal has same variation (with time) as the data consists of (a series of) 'highs' and 'lows'	:4-)	B1 B1	
				or digital has no intermediate values	ins)	B1	[3]
		(ii)	e.g. (<i>an</i> y	can be regenerated / noise can be eliminated extra data can be added to check / correct transmitte / two reasonable suggestions, 1 each)	ed signal	B2	[2]
	(b)	(i)	anal sam	logue signal is sampled at (regular time) intervals upled signal is converted into a binary number		B1 B1	[2]
		(ii)	one	channel is required for each bit (of the digital number)		B1	[1]

MARK SCHEME for the October/November 2010 question paper

for the guidance of teachers

9702 PHYSICS

9702/51

Paper 5 (Planning, Analysis and Evaluation), maximum raw mark 30

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper		
	GCE A/AS LEVEL – October/November 2010	9702	51		
1 Planning (15	marks)				
Defining the P1 f is the ir P2 Keep the P3 Keep the Do not c	problem (3 marks) dependent variable and <i>V</i> is the dependent variable of <u>current</u> in coil X <u>constant</u> number of turns on coil (Y)/area of coil Y <u>constant</u> redit reference to coil X only.	r vary <i>f</i> and mea	isure V [1] [1] [1]		
Methods of M1 Two inde M2 Alternation M3 Coil Y co M4 Use c.r.co M5 Method t	data collection (5 marks) ependent coils labelled X and Y. ng power supply/signal generator connected to coil X in nnected to voltmeter/c.r.o. in a workable circuit. to determine period/frequency or read off signal generation o keep <u>current</u> constant in coil X: adjust signal generation	n a workable ciro erator. tor/use of rheost	[1] cuit. [1] [1] cat. [1]		
Method of a A1 Plot a gr A2 Relation:	Method of analysis (2 marks)A1Plot a graph of V against f.A2Relationship valid if straight line through origin				
Safety cons S1 Reference to hot co	derations (1 mark) e to hot coils – switch off when not in use/use gloves. ils.	/do not touch co	ils. Must refer [1]		
Additional d D1/2/3/4 Rele	etail (4 marks) vant points might include		[4]		
 Use Use Deta Avoi Deta Evoi Deta Use Use Kee 	large current in coil X/large number of coils on coil Y (iron core (to increase emf). iil on measuring emf e.g. height × <i>y</i> -gain. d other <u>alternating</u> magnetic fields. iil on measuring frequency from c.r.o. to determine per of ammeter/c.r.o. and resistor to check current is cons insulated wire for coils. to coil Y and coil X in the same relative positions.	to increase emf) riod and hence <i>f</i> stant			

Page 3	age 3 Mark Scheme: Teachers' version		Paper
	GCE A/AS LEVEL – October/November 2010	9702	51

2 Analysis, conclusions and evaluation (15 marks)

Part	Mark	Expected Answer	Additional Guidance
(a)	A1	Gradient = <i>b</i> <i>y</i> -intercept = lg <i>a</i>	Allow log a but not ln a
(b)	T1 T2	1.97770.292 or 0.29231.92940.265 or 0.26481.87510.241 or 0.24051.81290.210 or 0.20951.74040.170 or 0.17031.65320.127 or 0.1271	T1 for lg <i>l</i> column – ignore rounding errors; min 2 dp. T2 for lg <i>T</i> column – must be values given A mixture is allowed
	U1	From \pm 0.004 or \pm 0.005 to \pm 0.006 or \pm 0.007	Allow more than one significant figure.
(c) (i)	G1	Six points plotted correctly	Must be within half a small square; penalise \geq half a small square. Penalise 'blobs' \geq half a small square. Ecf allowed from table.
	U2	Error bars in lg (<i>T</i> /s) plotted correctly.	All error bars must be plotted. Check first and last point. Must be accurate within half a small square; penalise \geq half a small square.
(ii)	G2	Line of best fit	If points are plotted correctly then lower end of line should pass between (1.65, 0.124) and (1.65, 0.128) and upper end of line should pass between (2.00, 0.300) and (2.00, 0.306). Allow ecf from points plotted incorrectly; five trend plots needed – examiner judgement.
	G3	Worst acceptable straight line. Steepest or shallowest possible line that passes through <u>all</u> the error bars.	Line should be clearly labelled or dashed. Should pass from top of top error bar to bottom of bottom error bar or bottom of top error bar to top of bottom error bar. Mark scored only if all error bars are plotted.
(iii)	C1	Gradient of best fit line	The triangle used should be at least half the length of the drawn line. Check the read offs. Work to half a small square; penalise \geq half a small square.
	U3	Uncertainty in gradient	Method of determining absolute uncertainty Difference in worst gradient and gradient.
(iv)	C2	<i>y</i> -intercept	Must be negative. Check substitution of point from line into $c = y - mx$. Allow ecf from (c)(iii).

P	age 4	Mark Scheme: Teachers' version		Syllabus	Paper
		GCE A/AS LEVEL – October/No	ovember 2010	9702	51
U4		Uncertainty in <i>y</i> -intercept	Method of detern Difference in wo Do not allow ecf (FOX). Allow ec	mining absolute rst <i>y</i> -intercept au from false origir f from (c)(iv) .	uncertainty nd <i>y</i> -intercept. n read-off
(d)	C3	$a = 10^{y \text{ intercept}}$	<i>y</i> -intercept must about 0.19. If FC	be used. Exped X expect answe	ct an answer of er of about 1.3.
	C4	<i>b</i> = gradient <u>and</u> in the range 0.495 to 0.520 <u>and</u> to 2 or 3 sf	Allow 0.50 to 0.5 Penalise 1 sf or	52 to 2 sf ≥4 sf	
	U5	Absolute uncertainty in <i>a</i> and <i>b</i>	Difference in <i>a</i> a Uncertainty in <i>b</i> uncertainty in the	nd worst <i>a</i> . should be the sa e gradient.	ame as the

Uncertainties in Question 2

(c) (iii) Gradient [U3]

- Uncertainty = gradient of line of best fit gradient of worst acceptable line 1.
- Uncertainty = 1/2 (steepest worst line gradient shallowest worst line gradient) 2.

(c) (iv) [U4]

- 1. Uncertainty = y-intercept of line of best fit y-intercept of worst acceptable line
- 2. Uncertainty = $\frac{1}{2}$ (y-intercept of steepest worst line – y-intercept of shallowest worst line)

(d) [U5] 1. Uncertainty = $10^{\text{best y intercept}} - 10^{\text{worst y intercept}}$

PMT

MARK SCHEME for the October/November 2010 question paper

for the guidance of teachers

9702 PHYSICS

9702/52

Paper 5 (Planning, Analysis and Evaluation), maximum raw mark 30

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

Page 2		Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL – October/November 2010 9702			
1 Plan	ning (15	5 marks)		
Defir P1 <i>f</i> P2 k P3 k [ting the is the ir keep the keep the Do not c	problem (3 marks) adependent variable and <i>V</i> is the dependent variable or <u>current</u> in coil X <u>constant</u> number of turns on coil (Y)/area of coil Y <u>constant</u> redit reference to coil X only.	r vary <i>f</i> and mea	sure V [1] [1] [1]
Meth M1 M2 M3 M3 M4 M5	ods of Two inde Alternation Coil Y co Jse c.r.c Method t	data collection (5 marks) ependent coils labelled X and Y. ng power supply/signal generator connected to coil X ir onnected to voltmeter/c.r.o. in a workable circuit. b. to determine period/frequency or read off signal generat to keep <u>current</u> constant in coil X: adjust signal generat	n a workable circ erator. eor/use of rheosta	[1] uit. [1] [1] at. [1]
Meth A1 F A2 F	od of a Plot a gr Relation	nalysis (2 marks) aph of <i>V</i> against <i>f</i> . ship valid if straight line <u>through origin</u>		[1] [1]
Safe S1 F t	ty cons Reference o hot co	i derations (1 mark) ce to hot coils – switch off when not in use/use gloves/ ils.	'do not touch coi	ls. Must refer [1]
Addi D1/2/	tional d /3/4 Rele	etail (4 marks) evant points might include		[4]
	I. Use 2. Use 3. Deta 4. Avoi 5. Deta 6. Use 7. Use 8. Kee	large current in coil X/large number of coils on coil Y (t iron core (to increase emf). ail on measuring emf e.g. height \times <i>y</i> -gain. d other <u>alternating</u> magnetic fields. ail on measuring frequency from c.r.o. to determine per of ammeter/c.r.o. and resistor to check current is cons insulated wire for coils. p coil Y and coil X in the same relative positions.	to increase emf). iod and hence <i>f</i> . tant	
Do n	ot allow	vague computer methods.		

Page 3	Page 3 Mark Scheme: Teachers' version		Paper
	GCE A/AS LEVEL – October/November 2010	9702	52

2 Analysis, conclusions and evaluation (15 marks)

Part	Mark	Expected Answer	Additional Guidance
(a)	A1	Gradient = <i>b</i> <i>y</i> -intercept = lg <i>a</i>	Allow log a but not ln a
(b)	T1 T2	1.97770.292 or 0.29231.92940.265 or 0.26481.87510.241 or 0.24051.81290.210 or 0.20951.74040.170 or 0.17031.65320.127 or 0.1271	T1 for lg <i>l</i> column – ignore rounding errors; min 2 dp. T2 for lg <i>T</i> column – must be values given A mixture is allowed
	U1	From \pm 0.004 or \pm 0.005 to \pm 0.006 or \pm 0.007	Allow more than one significant figure.
(c) (i)	G1	Six points plotted correctly	Must be within half a small square; penalise \geq half a small square. Penalise 'blobs' \geq half a small square. Ecf allowed from table.
	U2	Error bars in lg (<i>T</i> /s) plotted correctly.	All error bars must be plotted. Check first and last point. Must be accurate within half a small square; penalise \geq half a small square.
(ii)	G2	Line of best fit	If points are plotted correctly then lower end of line should pass between (1.65, 0.124) and (1.65, 0.128) and upper end of line should pass between (2.00, 0.300) and (2.00, 0.306). Allow ecf from points plotted incorrectly; five trend plots needed – examiner judgement.
	G3	Worst acceptable straight line. Steepest or shallowest possible line that passes through <u>all</u> the error bars.	Line should be clearly labelled or dashed. Should pass from top of top error bar to bottom of bottom error bar or bottom of top error bar to top of bottom error bar. Mark scored only if all error bars are plotted.
(iii)	C1	Gradient of best fit line	The triangle used should be at least half the length of the drawn line. Check the read offs. Work to half a small square; penalise \geq half a small square.
	U3	Uncertainty in gradient	Method of determining absolute uncertainty Difference in worst gradient and gradient.
(iv)	C2	<i>y</i> -intercept	Must be negative. Check substitution of point from line into $c = y - mx$. Allow ecf from (c)(iii).

Page 4		Mark Scheme: Teachers' version		Syllabus	Paper
		GCE A/AS LEVEL – October/November 2010		9702	52
	U4	Uncertainty in <i>y</i> -intercept	Method of determining absolute uncertainty Difference in worst <i>y</i> -intercept and <i>y</i> -intercept. Do not allow ecf from false origin read-off (FOX). Allow ecf from (c)(iv) .		
(d)	C3	$a = 10^{y \text{ intercept}}$	<i>y</i> -intercept must be used. Expect an answer of about 0.19. If FOX expect answer of about 1.3.		
	C4	<i>b</i> = gradient <u>and</u> in the range 0.495 to 0.520 <u>and</u> to 2 or 3 sf	Allow 0.50 to 0.5 Penalise 1 sf or	52 to 2 sf ≥4 sf	
	U5	Absolute uncertainty in a and b	Difference in <i>a</i> a Uncertainty in <i>b</i> uncertainty in the	nd worst <i>a.</i> should be the sa e gradient.	ame as the

Uncertainties in Question 2

(c) (iii) Gradient [U3]

- Uncertainty = gradient of line of best fit gradient of worst acceptable line 1.
- Uncertainty = 1/2 (steepest worst line gradient shallowest worst line gradient) 2.

(c) (iv) [U4]

- 1. Uncertainty = y-intercept of line of best fit y-intercept of worst acceptable line
- 2. Uncertainty = $\frac{1}{2}$ (y-intercept of steepest worst line – y-intercept of shallowest worst line)

(d) [U5] 1. Uncertainty = $10^{\text{best y intercept}} - 10^{\text{worst y intercept}}$

PMT

MARK SCHEME for the October/November 2010 question paper

for the guidance of teachers

9702 PHYSICS

9702/53

Paper 5 (Planning, Analysis and Evaluation), maximum raw mark 30

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

GCE A/AS LEVEL - October/November 2010970253Planning (15 marks)Defining the problem (3 marks)P1 c, d or A is the independent variable and R is the dependent variable or vary c, d or measure R.P2 If c varied then (t and) d or A kept constant, if d varied then (t and) c or A kept constant.P3 Keep temperature constant.P3 Keep temperature constant.Methods of data collection (5 marks)M1 Circuit diagram to measure resistance.M2 Use micrometer screw gauge to measure d or t. (Allow digital or vernier callipers)M3 Measure c with a ruler/metre rule.Method of making contact with the strip e.g. use electrodes of at least same dimension or d or t or conducting paint methods. Do not allow crocodile clips, unless it is clear to whole area of the end of the strip is covered.Method of analysis (2 marks)A1 Plot a graph of R against c, 1/d or 1/A depending on orientation. Other alternatives pose e.g. R against 1/c depending on orientationAdvected to determine resistance.Method of analysis (2 marks)A1 Plot a graph of R against c, 1/d or 1/A depending on orientation. Other alternatives pose e.g. R against 1/c depending on orientationAdvected to determine resistanceMethod of analysis (2 marks)A1 Plot a graph of R against c, 1/d or 1/A depending on orientation. Other alternatives pose e.g. R against 1/c depending on orientationAdvected to extend with h1: $p = A \times$ gradient/tSafety	Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
Planning (15 marks) Defining the problem (3 marks) P1 c, d or A is the independent variable and R is the dependent variable or vary c, d or measure R. P2 If c varied then (t and) d or A kept constant, if d varied then (t and) c or A kept constant varied then c or d kept constant. P3 Keep temperature constant. P3 Keep temperature constant. P4 If c varied then (t and) d or A kept constant. P3 Keep temperature constant. P4 If c varied then (t and) d or A kept constant. P3 Keep temperature constant. P4 If courid diagram to measure resistance. Wethods of data collection (5 marks) M M4 Nethod of making contact with the strip e.g. use electrodes of at least same dimensio or d or t conducting paint methods. Do not allow crocodile clips, unless it is clear the whole area of the end of the strip is covered. M5 Method to determine resistance. Method of analysis (2 marks) A1 A1 Plot a graph of R against c, 1/d or 1/A depending on orientation. Other alternatives postel. A2 Must be consistent with A1: $\rho = A \times$ gradient or $t \times$ gradient/c Other alternatives possible, e.g. $\rho = d \times$ gradient/t Safety considerations (1 mark) S1 <		GCE A/AS LEVEL – October/November 2010	9702	53
Defining the problem (3 marks) P1 <i>c</i> , <i>d</i> or <i>A</i> is the independent variable and <i>R</i> is the dependent variable or vary <i>c</i> , <i>d</i> or measure <i>R</i> . P2 If <i>c</i> varied then (<i>t</i> and) <i>d</i> or <i>A</i> kept constant, if <i>d</i> varied then (<i>t</i> and) <i>c</i> or <i>A</i> kept constant varied then c or <i>d</i> kept constant. P3 Keep temperature <u>constant</u> . Methods of data collection (5 marks) M1 Circuit diagram to measure resistance. M2 Use micrometer screw gauge to measure <i>d</i> or <i>t</i> . (Allow digital or vernier callipers) M3 Measure <i>c</i> with a ruler/metre rule. M4 Method of making contact with the strip e.g. use electrodes of at least same dimensio or <i>d</i> or <i>t</i> or conducting paint methods. Do not allow crocodile clips, unless it is clear the whole area of the end of the strip is covered. M5 Method to determine resistance. Method of analysis (2 marks) A1 Plot a graph of <i>R</i> against <i>c</i> , 1/ <i>d</i> or 1/ <i>A</i> depending on orientation. Other alternatives por e.g. <i>R</i> against 1/ <i>c</i> depending on orientation A2 Must be consistent with A1: $\rho = A \times$ gradient or <i>t</i> × gradient/ <i>c</i> Other alternatives possible, e.g. $\rho = d \times$ gradient/ <i>t</i> Safety considerations (1 mark) S1 Reference sharp edges or cutting metals, e.g. wear gloves. Additional detail (4 marks) D1/2/3/4 Relevant points might include 1. Insulate aluminium strip 2. Take many readings of <i>t</i> or <i>d</i> and average 3. Use a protective resistor/circuit designed to reduce current 4. Rearrange equation to determine graph using <i>c</i> , <i>d</i> and <i>t</i> or A 5. Determine typical resistance of aluminium strip 6. Likely meter range of ammeter/voltmeter/ohmmeter 7. Detail on cutting strip e.g. mark using set square Do not allow vague computer methods.	Planning	(15 marks)		
 P1 <i>c</i>, <i>d</i> or <i>A</i> is the independent variable and <i>R</i> is the dependent variable or vary <i>c</i>, <i>d</i> or measure <i>R</i>. P2 If <i>c</i> varied then (<i>t</i> and) <i>d</i> or <i>A</i> kept constant, if <i>d</i> varied then (<i>t</i> and) <i>c</i> or <i>A</i> kept constant varied then <i>c</i> or <i>d</i> kept constant. P3 Keep temperature constant. P4 If circuit diagram to measure resistance. M2 Use micrometer screw gauge to measure <i>d</i> or <i>t</i>. (Allow digital or vernier callipers) M3 Measure <i>c</i> with a ruler/metre rule. M4 Method of making contact with the strip e.g. use electrodes of at least same dimensio or <i>d</i> or <i>t</i> or conducting paint methods. Do not allow crocodile clips, unless it is clear the whole area of the end of the strip is covered. M5 Method for analysis (2 marks) A1 Plot a graph of <i>R</i> against <i>c</i>, 1/<i>d</i> or 1/<i>A</i> depending on orientation. Other alternatives pore. <i>g</i>, <i>R</i> against 1/<i>c</i> depending on orientation. Other alternatives pore. <i>g</i>, <i>R</i> against 1/<i>c</i> depending on orientation A2 Must be consistent with A1: <i>p</i> = <i>A</i> × gradient or <i>t</i> × gradient/<i>c</i> Other alternatives possible, e.g. <i>p</i> = <i>d</i> × gradient/<i>t</i> Safety considerations (1 mark) S1 Reference sharp edges or cutting metals, e.g. wear gloves. Additional detail (4 marks) D1/2/3/4 Relevant points might include Insulate aluminium strip Take many readings of <i>t</i> or <i>d</i> and average Use a protective resistor/circuit designed to reduce current Rearrange equation to determine graph using <i>c</i>, <i>d</i> and <i>t</i> or A Determine typical resistance of aluminium strip Likely meter range of ammeter/voltmeter/ohmmeter Detail on cutting strip e.g. mark using set square 	Defining	the problem (3 marks)		
P2 If <i>c</i> varied then (<i>t</i> and) <i>d</i> or <i>A</i> kept constant, if <i>d</i> varied then (<i>t</i> and) <i>c</i> or <i>A</i> kept constant varied then <i>c</i> or <i>d</i> kept constant. P3 Keep temperature <u>constant</u> . Methods of data collection (5 marks) M1 Circuit diagram to measure resistance. M2 Use micrometer screw gauge to measure <i>d</i> or <i>t</i> . (Allow digital or vernier callipers) M3 Measure <i>c</i> with a ruler/metre rule. M4 Method of making contact with the strip e.g. use electrodes of at least same dimension or <i>d</i> or <i>t</i> or conducting paint methods. Do not allow crocodile clips, unless it is clear the whole area of the end of the strip is covered. M5 Method to determine resistance. Method of analysis (2 marks) A1 Plot a graph of <i>R</i> against <i>c</i> , 1/ <i>d</i> or 1/ <i>A</i> depending on orientation. Other alternatives por e.g. <i>R</i> against 1/ <i>c</i> depending on orientation A2 Must be consistent with A1: $\rho = A \times$ gradient or <i>t</i> × gradient/ <i>c</i> Other alternatives possible, e.g. $\rho = d \times$ gradient/ <i>t</i> Safety considerations (1 mark) S1 Reference sharp edges or cutting metals, e.g. wear gloves. Additional detail (4 marks) D1/2/3/4 Relevant points might include 1. Insulate aluminium strip 2. Take many readings of <i>t</i> or <i>d</i> and average 3. Use a protective resistor/circuit designed to reduce current 4. Rearrange equation to determine graph using <i>c</i> , <i>d</i> and <i>t</i> or A 5. Determine typical resistance of aluminium strip 6. Likely meter range of ammeter/voltmeter/ohmmeter 7. Detail on cutting strip e.g. mark using set square Do not allow vague computer methods.	P1 c, d	or A is the independent variable and R is the dependent	variable or vary	/ c, d or A a
varied then <i>c</i> or <i>d</i> kept constant. P3 Keep temperature <u>constant</u> . Methods of data collection (5 marks) M1 Circuit diagram to measure resistance. M2 Use micrometer screw gauge to measure <i>d</i> or <i>t</i> . (Allow digital or vernier callipers) M3 Measure <i>c</i> with a ruler/metre rule. M4 Method of making contact with the strip e.g. use electrodes of at least same dimensio or <i>d</i> or <i>t</i> or conducting paint methods. Do not allow crocodile clips, unless it is clear the whole area of the end of the strip is covered. M5 Method to determine resistance. Method of analysis (2 marks) A1 Plot a graph of <i>R</i> against <i>c</i> , 1/ <i>d</i> or 1/ <i>A</i> depending on orientation. Other alternatives por e.g. <i>R</i> against 1/ <i>c</i> depending on orientation A2 Must be consistent with A1: $\rho = A \times$ gradient or <i>t</i> × gradient/ <i>c</i> Other alternatives possible, e.g. $\rho = d \times$ gradient/ <i>t</i> Safety considerations (1 mark) S1 Reference sharp edges or cutting metals, e.g. wear gloves. Additional detail (4 marks) D1/2/3/4. Relevant points might include 1. Insulate aluminium strip 2. Take many readings of <i>t</i> or <i>d</i> and average 3. Use a protective resistor/circuit designed to reduce current 4. Rearrange equation to determine graph using <i>c</i> , <i>d</i> and <i>t</i> or A 5. Determine typical resistance of aluminium strip 6. Likely meter range of ammeter/voltmeter/ohmmeter 7. Detail on cutting strip e.g. mark using set square Do not allow vague computer methods.	P2 If c v	aried then (<i>t</i> and) <i>d</i> or A kept constant, if <i>d</i> varied then (<i>t</i>	and) c or A kep	t constant. if
 P3 Keep temperature <u>constant</u>. Methods of data collection (5 marks) M1 Circuit diagram to measure resistance. M2 Use micrometer screw gauge to measure <i>d</i> or <i>t</i>. (Allow digital or vernier callipers) M3 Measure <i>c</i> with a ruler/metre rule. M4 Method of making contact with the strip e.g. use electrodes of at least same dimensio or <i>d</i> or <i>t</i> or conducting paint methods. Do not allow crocodile clips, unless it is clear the whole area of the end of the strip is covered. M5 Method to determine resistance. Method of analysis (2 marks) A1 Plot a graph of <i>R</i> against <i>c</i>, 1/<i>d</i> or 1/<i>A</i> depending on orientation. Other alternatives por e.g. <i>R</i> against 1/<i>c</i> depending on orientation A2 Must be consistent with A1: <i>ρ</i> = <i>A</i> × gradient or <i>t</i> × gradient/<i>c</i> Other alternatives possible, e.g. <i>ρ</i> = <i>d</i> × gradient/<i>t</i> Safety considerations (1 mark) S1 Reference sharp edges or cutting metals, e.g. wear gloves. Additional detail (4 marks) D1/2/3/4 Relevant points might include Insulate aluminium strip Use a protective resistor/circuit designed to reduce current Rearrange equation to determine graph using <i>c</i>, <i>d</i> and <i>t</i> or A Determine typical resistance of aluminium strip Likely meter range of ammeter/voltmeter/ohmmeter Detail on cutting strip e.g. mark using set square 	varie	d then c or d kept constant.		
Methods of data collection (5 marks)M1Circuit diagram to measure resistance.M2Use micrometer screw gauge to measure <i>d</i> or <i>t</i> . (Allow digital or vernier callipers)M3Measure <i>c</i> with a ruler/metre rule.M4Method of making contact with the strip e.g. use electrodes of at least same dimensio or <i>d</i> or <i>t</i> or conducting paint methods. Do not allow crocodile clips, unless it is clear the whole area of the end of the strip is covered.M5Method to determine resistance.Method of analysis (2 marks)A1Plot a graph of <i>R</i> against <i>c</i> , 1/ <i>d</i> or 1/ <i>A</i> depending on orientation. Other alternatives pose e.g. <i>R</i> against 1/ <i>c</i> depending on orientationA2Must be consistent with A1: $\rho = A \times$ gradient or <i>t</i> × gradient/ <i>c</i> Other alternatives possible, e.g. $\rho = d \times$ gradient/ <i>t</i> Safety considerations (1 mark)S1Reference sharp edges or cutting metals, e.g. wear gloves.Additional detail (4 marks)D1/2/3/4Relevant points might include1Insulate aluminium strip2.Use a protective resistor/circuit designed to reduce current 4.4.Rearrange equation to determine graph using <i>c</i> , <i>d</i> and <i>t</i> or A5.Determine typical resistance of aluminium strip6.Likely meter range of ammeter/voltmeter/ohmmeter 7.7.Detail on cutting strip e.g. mark using set square	P3 Keep	temperature <u>constant</u> .		
 M1 Circuit diagram to measure resistance. M2 Use micrometer screw gauge to measure <i>d</i> or <i>t</i>. (Allow digital or vernier callipers) M3 Measure <i>c</i> with a ruler/metre rule. M4 Method of making contact with the strip e.g. use electrodes of at least same dimensio or <i>d</i> or <i>t</i> or conducting paint methods. Do not allow crocodile clips, unless it is clear the whole area of the end of the strip is covered. M5 Method to determine resistance. Method of analysis (2 marks) A1 Plot a graph of <i>R</i> against <i>c</i>, 1/<i>d</i> or 1/<i>A</i> depending on orientation. Other alternatives pose e.g. <i>R</i> against 1/<i>c</i> depending on orientation A2 Must be consistent with A1: <i>ρ</i> = <i>A</i> × gradient or <i>t</i> × gradient/<i>c</i> Other alternatives possible, e.g. <i>ρ</i> = <i>d</i> × gradient/<i>t</i> Safety considerations (1 mark) S1 Reference sharp edges or cutting metals, e.g. wear gloves. Additional detail (4 marks) D1/2/3/4 Relevant points might include Insulate aluminium strip Take many readings of <i>t</i> or <i>d</i> and average Use a protective resistor/circuit designed to reduce current Rearrange equation to determine graph using <i>c</i>, <i>d</i> and <i>t</i> or A Determine typical resistance of aluminium strip Likely meter range of ammeter/voltmeter/ohmmeter Detail on cutting strip e.g. mark using set square 	Methods	of data collection (5 marks)		
 M2 Use micrometer screw gauge to measure <i>d</i> or <i>t</i>. (Allow digital or vernier callipers) M3 Measure <i>c</i> with a ruler/metre rule. M4 Method of making contact with the strip e.g. use electrodes of at least same dimensio or <i>d</i> or <i>t</i> or conducting paint methods. Do not allow crocodile clips, unless it is clear th whole area of the end of the strip is covered. M5 Method to determine resistance. Method of analysis (2 marks) A1 Plot a graph of <i>R</i> against <i>c</i>, 1/<i>d</i> or 1/<i>A</i> depending on orientation. Other alternatives pose e.g. <i>R</i> against 1/<i>c</i> depending on orientation A2 Must be consistent with A1: <i>ρ</i> = <i>A</i> × gradient or <i>t</i> × gradient/<i>c</i> Other alternatives possible, e.g. <i>ρ</i> = <i>d</i> × gradient/<i>t</i> Safety considerations (1 mark) S1 Reference sharp edges or cutting metals, e.g. wear gloves. Additional detail (4 marks) D1/2/3/4 Relevant points might include Insulate aluminium strip Take many readings of <i>t</i> or <i>d</i> and average Use a protective resistor/circuit designed to reduce current Rearrange equation to determine graph using <i>c</i>, <i>d</i> and <i>t</i> or A Determine typical resistance of aluminium strip Likely meter range of ammeter/voltmeter/ohmmeter Detail on cutting strip e.g. mark using set square 	M1 Circu	it diagram to measure resistance.		、
 M4 Method of making contact with the strip e.g. use electrodes of at least same dimensio or <i>d</i> or <i>t</i> or conducting paint methods. Do not allow crocodile clips, unless it is clear th whole area of the end of the strip is covered. M5 Method to determine resistance. Method of analysis (2 marks) A1 Plot a graph of <i>R</i> against <i>c</i>, 1/<i>d</i> or 1/<i>A</i> depending on orientation. Other alternatives por e.g. <i>R</i> against 1/<i>c</i> depending on orientation A2 Must be consistent with A1: <i>p</i> = <i>A</i> × gradient or <i>t</i> × gradient/<i>c</i> Other alternatives possible, e.g. <i>p</i> = <i>d</i> × gradient/<i>t</i> Safety considerations (1 mark) S1 Reference sharp edges or cutting metals, e.g. wear gloves. Additional detail (4 marks) D1/2/3/4 Relevant points might include Insulate aluminium strip Take many readings of <i>t</i> or <i>d</i> and average Use a protective resistor/circuit designed to reduce current Rearrange equation to determine graph using <i>c</i>, <i>d</i> and <i>t</i> or A Determine typical resistance of aluminium strip Likely meter range of ammeter/voltmeter/ohmmeter Detail on cutting strip e.g. mark using set square 	M2 Use	micrometer screw gauge to measure <i>d</i> or <i>t</i> . (Allow digital c	or vernier callipe	rs)
 or <i>d</i> or <i>t</i> or conducting paint methods. Do not allow crocodile clips, unless it is clear the whole area of the end of the strip is covered. M5 Method to determine resistance. Method of analysis (2 marks) A1 Plot a graph of <i>R</i> against <i>c</i>, 1/<i>d</i> or 1/<i>A</i> depending on orientation. Other alternatives pose e.g. <i>R</i> against 1/<i>c</i> depending on orientation A2 Must be consistent with A1: <i>ρ</i> = <i>A</i> × gradient or <i>t</i> × gradient/<i>c</i> Other alternatives possible, e.g. <i>ρ</i> = <i>d</i> × gradient/<i>t</i> Safety considerations (1 mark) S1 Reference sharp edges or cutting metals, e.g. wear gloves. Additional detail (4 marks) D1/2/3/4 Relevant points might include Insulate aluminium strip Take many readings of <i>t</i> or <i>d</i> and average Use a protective resistor/circuit designed to reduce current Rearrange equation to determine graph using <i>c</i>, <i>d</i> and <i>t</i> or A Determine typical resistance of aluminium strip Likely meter range of aluminium strip Likely meter range of aluminium strip Detail on cutting strip e.g. mark using set square Do not allow vague computer methods. 	M4 Meth	od of making contact with the strip e.g. use electrodes of	f at least same o	dimension a
 whole area of the end of the strip is covered. M5 Method to determine resistance. Method of analysis (2 marks) A1 Plot a graph of <i>R</i> against <i>c</i>, 1/<i>d</i> or 1/<i>A</i> depending on orientation. Other alternatives pose e.g. <i>R</i> against 1/<i>c</i> depending on orientation A2 Must be consistent with A1: <i>p</i> = <i>A</i> × gradient or <i>t</i> × gradient/<i>c</i> Other alternatives possible, e.g. <i>p</i> = <i>d</i> × gradient/<i>t</i> Safety considerations (1 mark) S1 Reference sharp edges or cutting metals, e.g. wear gloves. Additional detail (4 marks) D1/2/3/4 Relevant points might include Insulate aluminium strip Take many readings of <i>t</i> or <i>d</i> and average Use a protective resistor/circuit designed to reduce current Rearrange equation to determine graph using <i>c</i>, <i>d</i> and <i>t</i> or A Determine typical resistance of aluminium strip Likely meter range of ammeter/voltmeter/ohmmeter Detail on cutting strip e.g. mark using set square 	or d	or <i>t</i> or conducting paint methods. Do not allow crocodile	clips, unless it is	s clear that t
 M5 Method to determine resistance. Method of analysis (2 marks) A1 Plot a graph of <i>R</i> against <i>c</i>, 1/<i>d</i> or 1/<i>A</i> depending on orientation. Other alternatives pose e.g. <i>R</i> against 1/<i>c</i> depending on orientation A2 Must be consistent with A1: <i>ρ</i> = <i>A</i> × gradient or <i>t</i> × gradient/<i>c</i> Other alternatives possible, e.g. <i>ρ</i> = <i>d</i> × gradient/<i>t</i> Safety considerations (1 mark) S1 Reference sharp edges or cutting metals, e.g. wear gloves. Additional detail (4 marks) D1/2/3/4 Relevant points might include Insulate aluminium strip Take many readings of <i>t</i> or <i>d</i> and average Use a protective resistor/circuit designed to reduce current Rearrange equation to determine graph using <i>c</i>, <i>d</i> and <i>t</i> or A Determine typical resistance of aluminium strip Likely meter range of ammeter/voltmeter/ohmmeter Detail on cutting strip e.g. mark using set square Do not allow vague computer methods. 	whole	e area of the end of the strip is covered.		
 Method of analysis (2 marks) A1 Plot a graph of <i>R</i> against <i>c</i>, 1/<i>d</i> or 1/<i>A</i> depending on orientation. Other alternatives pose e.g. <i>R</i> against 1/<i>c</i> depending on orientation A2 Must be consistent with A1: <i>p</i> = <i>A</i> × gradient or <i>t</i> × gradient/<i>c</i> Other alternatives possible, e.g. <i>p</i> = <i>d</i> × gradient/<i>t</i> Safety considerations (1 mark) S1 Reference sharp edges or cutting metals, e.g. wear gloves. Additional detail (4 marks) D1/2/3/4 Relevant points might include Insulate aluminium strip Take many readings of <i>t</i> or <i>d</i> and average Use a protective resistor/circuit designed to reduce current Rearrange equation to determine graph using <i>c</i>, <i>d</i> and <i>t</i> or A Determine typical resistance of aluminium strip Likely meter range of ammeter/voltmeter/ohmmeter Detail on cutting strip e.g. mark using set square 	M5 Meth	od to determine resistance.		
 A1 Plot a graph of <i>R</i> against <i>c</i>, 1/<i>d</i> or 1/<i>A</i> depending on orientation. Other alternatives pose e.g. <i>R</i> against 1/<i>c</i> depending on orientation A2 Must be consistent with A1: <i>ρ</i> = <i>A</i> × gradient or <i>t</i> × gradient/<i>c</i> Other alternatives possible, e.g. <i>ρ</i> = <i>d</i> × gradient/<i>t</i> Safety considerations (1 mark) S1 Reference sharp edges or cutting metals, e.g. wear gloves. Additional detail (4 marks) D1/2/3/4 Relevant points might include Insulate aluminium strip Take many readings of <i>t</i> or <i>d</i> and average Use a protective resistor/circuit designed to reduce current Rearrange equation to determine graph using <i>c</i>, <i>d</i> and <i>t</i> or A Determine typical resistance of aluminium strip Likely meter range of ammeter/voltmeter/ohmmeter Detail on cutting strip e.g. mark using set square 	Method o	of analysis (2 marks)		
A2 Must be consistent with A1: $\rho = A \times \text{gradient}$ or $t \times \text{gradient}/c$ Other alternatives possible, e.g. $\rho = d \times \text{gradient}/t$ Safety considerations (1 mark) S1 Reference sharp edges or cutting metals, e.g. wear gloves. Additional detail (4 marks) D1/2/3/4 Relevant points might include 1. Insulate aluminium strip 2. Take many readings of <i>t</i> or <i>d</i> and average 3. Use a protective resistor/circuit designed to reduce current 4. Rearrange equation to determine graph using <i>c</i> , <i>d</i> and <i>t</i> or A 5. Determine typical resistance of aluminium strip 6. Likely meter range of ammeter/voltmeter/ohmmeter 7. Detail on cutting strip e.g. mark using set square Do not allow vague computer methods.	A1 Plot a	a graph of <i>R</i> against <i>c</i> , 1/ <i>d</i> or 1/A depending on orientatio	n. Other alterna	atives possib
Other alternatives possible, e.g. $\rho = d \times \text{gradient/t}$ Safety considerations (1 mark) S1 Reference sharp edges or cutting metals, e.g. wear gloves. Additional detail (4 marks) D1/2/3/4 Relevant points might include 1. Insulate aluminium strip 2. Take many readings of <i>t</i> or <i>d</i> and average 3. Use a protective resistor/circuit designed to reduce current 4. Rearrange equation to determine graph using <i>c</i> , <i>d</i> and <i>t</i> or A 5. Determine typical resistance of aluminium strip 6. Likely meter range of ammeter/voltmeter/ohmmeter 7. Detail on cutting strip e.g. mark using set square Do not allow vague computer methods.	A2 Must	be consistent with A1: $\rho = A \times \text{gradient}$ or $t \times \text{gradient}/c$		
 Safety considerations (1 mark) S1 Reference sharp edges or cutting metals, e.g. wear gloves. Additional detail (4 marks) D1/2/3/4 Relevant points might include Insulate aluminium strip Take many readings of t or d and average Use a protective resistor/circuit designed to reduce current Rearrange equation to determine graph using c, d and t or A Determine typical resistance of aluminium strip Likely meter range of ammeter/voltmeter/ohmmeter Detail on cutting strip e.g. mark using set square Do not allow vague computer methods. 	Othe	r alternatives possible, e.g. $\rho = d \times \text{gradient}/t$		
 S1 Reference sharp edges or cutting metals, e.g. wear gloves. Additional detail (4 marks) D1/2/3/4 Relevant points might include Insulate aluminium strip Take many readings of <i>t</i> or <i>d</i> and average Use a protective resistor/circuit designed to reduce current Rearrange equation to determine graph using <i>c</i>, <i>d</i> and <i>t</i> or A Determine typical resistance of aluminium strip Likely meter range of ammeter/voltmeter/ohmmeter Detail on cutting strip e.g. mark using set square Do not allow vague computer methods. 	Safety co	onsiderations (1 mark)		
 Additional detail (4 marks) D1/2/3/4 Relevant points might include Insulate aluminium strip Take many readings of t or d and average Use a protective resistor/circuit designed to reduce current Rearrange equation to determine graph using c, d and t or A Determine typical resistance of aluminium strip Likely meter range of ammeter/voltmeter/ohmmeter Detail on cutting strip e.g. mark using set square Do not allow vague computer methods. 	S1 Refe	rence sharp edges or cutting metals, e.g. wear gloves.		
 D1/2/3/4 Relevant points might include Insulate aluminium strip Take many readings of <i>t</i> or <i>d</i> and average Use a protective resistor/circuit designed to reduce current Rearrange equation to determine graph using <i>c</i>, <i>d</i> and <i>t</i> or A Determine typical resistance of aluminium strip Likely meter range of ammeter/voltmeter/ohmmeter Detail on cutting strip e.g. mark using set square Do not allow vague computer methods. 	Addition	al detail (4 marks)		
 Insulate aluminium strip Take many readings of <i>t</i> or <i>d</i> and average Use a protective resistor/circuit designed to reduce current Rearrange equation to determine graph using <i>c</i>, <i>d</i> and <i>t</i> or A Determine typical resistance of aluminium strip Likely meter range of ammeter/voltmeter/ohmmeter Detail on cutting strip e.g. mark using set square Do not allow vague computer methods.	D1/2/3/4	Relevant points might include		
 Use a protective resistor/circuit designed to reduce current Rearrange equation to determine graph using <i>c</i>, <i>d</i> and <i>t</i> or A Determine typical resistance of aluminium strip Likely meter range of ammeter/voltmeter/ohmmeter Detail on cutting strip e.g. mark using set square Do not allow vague computer methods. 	1. I 2 ⁻	nsulate aluminium strip Take many readings of <i>t</i> or <i>d</i> and average		
 4. Rearrange equation to determine graph using <i>c</i>, <i>d</i> and <i>t</i> or A 5. Determine typical resistance of aluminium strip 6. Likely meter range of ammeter/voltmeter/ohmmeter 7. Detail on cutting strip e.g. mark using set square Do not allow vague computer methods. 	2. 3. l	Jse a protective resistor/circuit designed to reduce current	t	
 Determine typical resistance of aluminium strip Likely meter range of ammeter/voltmeter/ohmmeter Detail on cutting strip e.g. mark using set square Do not allow vague computer methods.	4. F	Rearrange equation to determine graph using c, d and t or	A	
 6. Likely meter range of ammeter/voltmeter/ohmmeter 7. Detail on cutting strip e.g. mark using set square Do not allow vague computer methods. 	5. I	Determine typical resistance of aluminium strip		
Do not allow vague computer methods.	6. l 7 r	Likely meter range of ammeter/voltmeter/ohmmeter		
Do not allow vague computer methods.	ί. Ι	Jetan on outling stilp e.g. mark using set square		
	Do not al	ow vague computer methods.		
ITota				[Total: ²

PMT

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL – October/November 2010	9702	53

2 Analysis, conclusions and evaluation (15 marks)

Part	Mark	Expected Answer	Additional Guidance		
(a)	A1	$\frac{t}{C}$	Must be negative. Allow $\frac{15}{C}$.		
(b)	T1 T2	1501.28 or 1.2811001.61 or 1.60966.71.86 or 1.85650.01.97 or 1.97433.32.08 or 2.079	T1 for 1/ <i>R</i> column – ignore sf and rounding errors T2 for In (<i>V</i> /V) column – must be values given A mixture is allowed		
	U1	From \pm 0.05 or \pm 0.06 to \pm 0.02 or \pm 0.03	Allow more than one significant figure.		
(c) (i)	G1	Five points plotted correctly	Must be within half a small square; penalise \geq half a small square. Ecf allowed from table. Penalise 'blobs' \geq half a small square.		
	U2	Error bars in ln(<i>V</i> /V) plotted correctly.	All plots to have error bars; penalise \geq half a small square. Check first and last point. Must be accurate within half a small square.		
(ii)	G2	Line of best fit	If points are plotted correctly then upper end of line should pass between (20, 2.16) and (20, 2.18) and lower end of line should pass between (160, 1.20) and (160, 1.225). Allow ecf from points plotted incorrectly – examiner judgement.		
	G3	Worst acceptable straight line. Steepest or shallowest possible line that passes through <u>all</u> the error bars.	Line should be clearly labelled or dashed. Should pass from top of top error bar to bottom of bottom error bar or bottom of top error bar to top of bottom error bar. Mark scored only if all error bars are plotted.		
(iii)	C1	Gradient of best fit line Must be negative	The triangle used should be at least half the length of the drawn line. Check the read offs. Work to half a small square; penalise \geq half a small square. Do not penalise POT.		
	U3	Uncertainty in gradient	Method of determining absolute uncertainty. Difference in worst gradient and gradient.		
(d) (i)	C2	C = -15/gradient	Gradient must be used. Allow ecf from (c)(iii) . Do not penalise POT.		
	C3	2.14 × 10 ³ F to 2.24 × 10 ³ F and to 2 or 3 sf	Must be in range – penalise POT. Allow equivalent unit including s Ω^{-1} , C V 1 , A s V 1		

Page 4		Mark Scheme: Teachers' version		Syllabus	Paper
		GCE A/AS LEVEL – October/November 2010		9702	53
(ii)	U4	Determines % uncertainty in C	Uses worst gradient or worst calculated <i>C</i> value. Do not check calculation.		
(e)	C4	Determines <i>R</i> correctly	Expect to see an answer about 3000 Ω . R = 6.514/candidate's C; allow ecf from (d)(i)		
	U5	Determines absolute uncertainty	Determines worst value of R or (d)(ii) × R		

Uncertainties in Question 2

- (c) (iii) Gradient [U3]
 - 1. Uncertainty = gradient of line of best fit gradient of worst acceptable line
 - 2. Uncertainty = $\frac{1}{2}$ (steepest worst line gradient shallowest worst line gradient)
- (d) (ii) [U4]
 - 1. Works out worst *C* then determines % uncertainty
 - 2. Works out percentage uncertainty in gradient

(e) [U5]

1. Works out worst *R* then determines difference

2.
$$\Delta R = \left(\frac{\Delta \text{gradient}}{\text{gradient}}\right) R = \left(\frac{\Delta C}{C}\right) R$$